Topological MV-algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Locally Finite Mv -algebras and Riemann Surfaces

It is known that any MV -algebra is a topological MV -algebra. For a locally finite MV -algebra A with some algebraic and topological conditions the product A× A becomes a compact Riemann surface (modulo conformal equivalence). Topologically, it is a torus.

متن کامل

MV* - Algebras

In this paper we make an algebraic study of the variety of M V * –algebras introduced by C. C.Chang as an algebraic counterpart for a logic with positive and negative truth values. We build the algebraic theory of M V * –algebras within its own limits using a concept of ideal and of prime ideal that are very naturally related to the corresponding concepts in –groups. The main results are a subd...

متن کامل

Generalized MV-algebras

We generalize the notion of an MV-algebra in the context of residuated lattices to include noncommutative and unbounded structures. We investigate a number of their properties and prove that they can be obtained from lattice-ordered groups via a truncation construction that generalizes the Chang–Mundici Γ functor. This correspondence extends to a categorical equivalence that generalizes the one...

متن کامل

Derivations of MV-Algebras

In his classical paper 1 , Chang invented the notion of MV-algebra in order to provide an algebraic proof of the completeness theorem of infinite valued Lukasiewicz propositional calculus. Recently, the algebraic theory of MV-algebras is intensively studied, see 2–5 . The notion of derivation, introduced from the analytic theory, is helpful to the research of structure and property in algebraic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1997

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(97)00027-8